Перейти к основному содержимому
Перейти к основному содержимому

Оконные функции

Оконные функции позволяют выполнять вычисления по набору строк, связанным с текущей строкой. Некоторые из вычислений, которые вы можете выполнить, похожи на те, которые можно сделать с помощью агрегатной функции, но оконная функция не вызывает группировку строк в один вывод - отдельные строки все еще возвращаются.

Стандартные оконные функции

ClickHouse поддерживает стандартный синтаксис для определения окон и оконных функций. Таблица ниже показывает, поддерживается ли функция в данный момент.

ФункцияПоддерживается?
спонтанная спецификация окна (count(*) over (partition by id order by time desc))
выражения с участием оконных функций, например, (count(*) over ()) / 2)
WINDOW клаузула (select ... from table window w as (partition by id))
ROWS фрейм
RANGE фрейм✅ (по умолчанию)
синтаксис INTERVAL для DateTime RANGE OFFSET фрейм❌ (укажите количество секунд вместо этого (RANGE работает с любым числовым типом).)
GROUPS фрейм
Вычисление агрегатных функций по фрейму (sum(value) over (order by time))✅ (Поддерживаются все агрегатные функции)
rank(), dense_rank(), row_number()
Псевдоним: denseRank()
percent_rank()✅ Эффективно вычисляет относительное положение значения внутри партиции в наборе данных. Эта функция эффективно заменяет более многословный и вычислительно затратный ручной SQL расчет, выраженный как ifNull((rank() OVER(PARTITION BY x ORDER BY y) - 1) / nullif(count(1) OVER(PARTITION BY x) - 1, 0), 0)
Псевдоним: percentRank()
lag/lead(value, offset)
Вы можете использовать один из следующих обходных путей:
1) any(value) over (.... rows between <offset> preceding and <offset> preceding), или following для lead
2) lagInFrame/leadInFrame, которые аналогичны, но учитывают оконный фрейм. Чтобы получить поведение, идентичное lag/lead, используйте rows between unbounded preceding and unbounded following
ntile(buckets)
Укажите окно, например, (partition by x order by y rows between unbounded preceding and unbounded following).

Специфические для ClickHouse оконные функции

Также существует следующая специфическая для ClickHouse оконная функция:

nonNegativeDerivative(metric_column, timestamp_column[, INTERVAL X UNITS])

Находит ненегативную производную для указанного metric_column по timestamp_column. INTERVAL можно опустить, по умолчанию используется INTERVAL 1 SECOND. Вычисляемое значение следующее для каждой строки:

  • 0 для 1-й строки,
  • metricimetrici1timestampitimestampi1interval{\text{metric}_i - \text{metric}_{i-1} \over \text{timestamp}_i - \text{timestamp}_{i-1}} * \text{interval} для ithi_{th} строки.

Синтаксис

aggregate_function (column_name)
  OVER ([[PARTITION BY grouping_column] [ORDER BY sorting_column] 
        [ROWS or RANGE expression_to_bound_rows_withing_the_group]] | [window_name])
FROM table_name
WINDOW window_name as ([[PARTITION BY grouping_column] [ORDER BY sorting_column]])
  • PARTITION BY - определяет, как разбить набор результатов на группы.
  • ORDER BY - определяет, как упорядочить строки внутри группы во время вычисления aggregate_function.
  • ROWS or RANGE - определяет границы фрейма, aggregate_function вычисляется внутри фрейма.
  • WINDOW - позволяет нескольким выражениям использовать одно и то же определение окна.
      PARTITION
┌─────────────────┐  <-- UNBOUNDED PRECEDING (НАЧАЛО ПАРТИЦИИ)
│                 │
│                 │
│=================│  <-- N ПРЕДШЕСТВУЮЩИХ  <─┐
│      N СТРОК    │                     │  F
│  Перед ТЕКУЩЕЙ │                     │  R
│~~~~~~~~~~~~~~~~~│  <-- ТЕКУЩАЯ СТРОКА    │  A
│     M СТРОК     │                     │  M
│   После ТЕКУЩЕЙ │                     │  E
│=================│  <-- M СЛЕДУЮЩИХ  <─┘
│                 │
│                 │
└─────────────────┘  <--- UNBOUNDED FOLLOWING (КОНЕЦ ПАРТИЦИИ)

Функции

Эти функции могут использоваться только как оконные функции.

  • row_number() - Нумерует текущую строку в ее партиции, начиная с 1.
  • first_value(x) - Возвращает первое значение, оцененное в ее упорядоченном фрейме.
  • last_value(x) - Возвращает последнее значение, оцененное в ее упорядоченном фрейме.
  • nth_value(x, offset) - Возвращает первое ненулевое значение, оцененное по nth строке (offset) в ее упорядоченном фрейме.
  • rank() - Ранжирует текущую строку в ее партиции с gaps.
  • dense_rank() - Ранжирует текущую строку в ее партиции без gaps.
  • lagInFrame(x) - Возвращает значение, оцененное на строке, которая находится на заданном физическом смещении строк перед текущей строкой в упорядоченном фрейме.
  • leadInFrame(x) - Возвращает значение, оцененное на строке, которая находится на смещении строк после текущей строки в упорядоченном фрейме.

Примеры

Давайте рассмотрим несколько примеров использования оконных функций.

Нумерация строк

CREATE TABLE salaries
(
    `team` String,
    `player` String,
    `salary` UInt32,
    `position` String
)
Engine = Memory;

INSERT INTO salaries FORMAT Values
    ('Port Elizabeth Barbarians', 'Gary Chen', 195000, 'F'),
    ('New Coreystad Archdukes', 'Charles Juarez', 190000, 'F'),
    ('Port Elizabeth Barbarians', 'Michael Stanley', 150000, 'D'),
    ('New Coreystad Archdukes', 'Scott Harrison', 150000, 'D'),
    ('Port Elizabeth Barbarians', 'Robert George', 195000, 'M');
SELECT
    player,
    salary,
    row_number() OVER (ORDER BY salary ASC) AS row
FROM salaries;
┌─player──────────┬─salary─┬─row─┐
│ Michael Stanley │ 150000 │   1 │
│ Scott Harrison  │ 150000 │   2 │
│ Charles Juarez  │ 190000 │   3 │
│ Gary Chen       │ 195000 │   4 │
│ Robert George   │ 195000 │   5 │
└─────────────────┴────────┴─────┘
SELECT
    player,
    salary,
    row_number() OVER (ORDER BY salary ASC) AS row,
    rank() OVER (ORDER BY salary ASC) AS rank,
    dense_rank() OVER (ORDER BY salary ASC) AS denseRank
FROM salaries;
┌─player──────────┬─salary─┬─row─┬─rank─┬─denseRank─┐
│ Michael Stanley │ 150000 │   1 │    1 │         1 │
│ Scott Harrison  │ 150000 │   2 │    1 │         1 │
│ Charles Juarez  │ 190000 │   3 │    3 │         2 │
│ Gary Chen       │ 195000 │   4 │    4 │         3 │
│ Robert George   │ 195000 │   5 │    4 │         3 │
└─────────────────┴────────┴─────┴──────┴───────────┘

Агрегатные функции

Сравните зарплату каждого игрока со средней зарплатой их команды.

SELECT
    player,
    salary,
    team,
    avg(salary) OVER (PARTITION BY team) AS teamAvg,
    salary - teamAvg AS diff
FROM salaries;
┌─player──────────┬─salary─┬─team──────────────────────┬─teamAvg─┬───diff─┐
│ Charles Juarez  │ 190000 │ New Coreystad Archdukes   │  170000 │  20000 │
│ Scott Harrison  │ 150000 │ New Coreystad Archdukes   │  170000 │ -20000 │
│ Gary Chen       │ 195000 │ Port Elizabeth Barbarians │  180000 │  15000 │
│ Michael Stanley │ 150000 │ Port Elizabeth Barbarians │  180000 │ -30000 │
│ Robert George   │ 195000 │ Port Elizabeth Barbarians │  180000 │  15000 │
└─────────────────┴────────┴───────────────────────────┴─────────┴────────┘

Сравните зарплату каждого игрока с максимальной зарплатой их команды.

SELECT
    player,
    salary,
    team,
    max(salary) OVER (PARTITION BY team) AS teamMax,
    salary - teamMax AS diff
FROM salaries;
┌─player──────────┬─salary─┬─team──────────────────────┬─teamMax─┬───diff─┐
│ Charles Juarez  │ 190000 │ New Coreystad Archdukes   │  190000 │      0 │
│ Scott Harrison  │ 150000 │ New Coreystad Archdukes   │  190000 │ -40000 │
│ Gary Chen       │ 195000 │ Port Elizabeth Barbarians │  195000 │      0 │
│ Michael Stanley │ 150000 │ Port Elizabeth Barbarians │  195000 │ -45000 │
│ Robert George   │ 195000 │ Port Elizabeth Barbarians │  195000 │      0 │
└─────────────────┴────────┴───────────────────────────┴─────────┴────────┘

Партиционирование по колонке

CREATE TABLE wf_partition
(
    `part_key` UInt64,
    `value` UInt64,
    `order` UInt64    
)
ENGINE = Memory;

INSERT INTO wf_partition FORMAT Values
   (1,1,1), (1,2,2), (1,3,3), (2,0,0), (3,0,0);

SELECT
    part_key,
    value,
    order,
    groupArray(value) OVER (PARTITION BY part_key) AS frame_values
FROM wf_partition
ORDER BY
    part_key ASC,
    value ASC;

┌─part_key─┬─value─┬─order─┬─frame_values─┐
│        1 │     1 │     1 │ [1,2,3]      │   <┐   
│        1 │     2 │     2 │ [1,2,3]      │    │  1-я группа
│        1 │     3 │     3 │ [1,2,3]      │   <┘ 
│        2 │     0 │     0 │ [0]          │   <- 2-я группа
│        3 │     0 │     0 │ [0]          │   <- 3-я группа
└──────────┴───────┴───────┴──────────────┘

Границы фрейма

CREATE TABLE wf_frame
(
    `part_key` UInt64,
    `value` UInt64,
    `order` UInt64
)
ENGINE = Memory;

INSERT INTO wf_frame FORMAT Values
   (1,1,1), (1,2,2), (1,3,3), (1,4,4), (1,5,5);
-- Фрейм ограничен границами партиции (BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING)
SELECT
    part_key,
    value,
    order,
    groupArray(value) OVER (
        PARTITION BY part_key 
        ORDER BY order ASC
        ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING
    ) AS frame_values
FROM wf_frame
ORDER BY
    part_key ASC,
    value ASC;
    
┌─part_key─┬─value─┬─order─┬─frame_values─┐
│        1 │     1 │     1 │ [1,2,3,4,5]  │
│        1 │     2 │     2 │ [1,2,3,4,5]  │
│        1 │     3 │     3 │ [1,2,3,4,5]  │
│        1 │     4 │     4 │ [1,2,3,4,5]  │
│        1 │     5 │     5 │ [1,2,3,4,5]  │
└──────────┴───────┴───────┴──────────────┘
-- короткая форма - нет ограничивающего выражения, нет порядка,
-- эквивалент `ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING`
SELECT
    part_key,
    value,
    order,
    groupArray(value) OVER (PARTITION BY part_key) AS frame_values_short,
    groupArray(value) OVER (PARTITION BY part_key
         ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING
    ) AS frame_values
FROM wf_frame
ORDER BY
    part_key ASC,
    value ASC;
┌─part_key─┬─value─┬─order─┬─frame_values_short─┬─frame_values─┐
│        1 │     1 │     1 │ [1,2,3,4,5]        │ [1,2,3,4,5]  │
│        1 │     2 │     2 │ [1,2,3,4,5]        │ [1,2,3,4,5]  │
│        1 │     3 │     3 │ [1,2,3,4,5]        │ [1,2,3,4,5]  │
│        1 │     4 │     4 │ [1,2,3,4,5]        │ [1,2,3,4,5]  │
│        1 │     5 │     5 │ [1,2,3,4,5]        │ [1,2,3,4,5]  │
└──────────┴───────┴───────┴────────────────────┴──────────────┘
-- фрейм ограничен началом партиции и текущей строкой
SELECT
    part_key,
    value,
    order,
    groupArray(value) OVER (
        PARTITION BY part_key 
        ORDER BY order ASC
        ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
    ) AS frame_values
FROM wf_frame
ORDER BY
    part_key ASC,
    value ASC;

┌─part_key─┬─value─┬─order─┬─frame_values─┐
│        1 │     1 │     1 │ [1]          │
│        1 │     2 │     2 │ [1,2]        │
│        1 │     3 │     3 │ [1,2,3]      │
│        1 │     4 │     4 │ [1,2,3,4]    │
│        1 │     5 │     5 │ [1,2,3,4,5]  │
└──────────┴───────┴───────┴──────────────┘
-- короткая форма (фрейм ограничен началом партиции и текущей строкой)
-- эквивалент `ORDER BY order ASC ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW`
SELECT
    part_key,
    value,
    order,
    groupArray(value) OVER (PARTITION BY part_key ORDER BY order ASC) AS frame_values_short,
    groupArray(value) OVER (PARTITION BY part_key ORDER BY order ASC
       ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
    ) AS frame_values
FROM wf_frame
ORDER BY
    part_key ASC,
    value ASC;

┌─part_key─┬─value─┬─order─┬─frame_values_short─┬─frame_values─┐
│        1 │     1 │     1 │ [1]                │ [1]          │
│        1 │     2 │     2 │ [1,2]              │ [1,2]        │
│        1 │     3 │     3 │ [1,2,3]            │ [1,2,3]      │
│        1 │     4 │     4 │ [1,2,3,4]          │ [1,2,3,4]    │
│        1 │     5 │     5 │ [1,2,3,4,5]        │ [1,2,3,4,5]  │
└──────────┴───────┴───────┴────────────────────┴──────────────┘
-- фрейм ограничен началом партиции и текущей строкой, но порядок обратный
SELECT
    part_key,
    value,
    order,
    groupArray(value) OVER (PARTITION BY part_key ORDER BY order DESC) AS frame_values
FROM wf_frame
ORDER BY
    part_key ASC,
    value ASC;

┌─part_key─┬─value─┬─order─┬─frame_values─┐
│        1 │     1 │     1 │ [5,4,3,2,1]  │
│        1 │     2 │     2 │ [5,4,3,2]    │
│        1 │     3 │     3 │ [5,4,3]      │
│        1 │     4 │     4 │ [5,4]        │
│        1 │     5 │     5 │ [5]          │
└──────────┴───────┴───────┴──────────────┘
-- скользящий фрейм - 1 ПРЕДШЕСТВУЮЩАЯ СТРОКА И ТЕКУЩАЯ СТРОКА
SELECT
    part_key,
    value,
    order,
    groupArray(value) OVER (
        PARTITION BY part_key 
        ORDER BY order ASC
        ROWS BETWEEN 1 PRECEDING AND CURRENT ROW
    ) AS frame_values
FROM wf_frame
ORDER BY
    part_key ASC,
    value ASC;

┌─part_key─┬─value─┬─order─┬─frame_values─┐
│        1 │     1 │     1 │ [1]          │
│        1 │     2 │     2 │ [1,2]        │
│        1 │     3 │     3 │ [2,3]        │
│        1 │     4 │     4 │ [3,4]        │
│        1 │     5 │     5 │ [4,5]        │
└──────────┴───────┴───────┴──────────────┘
-- скользящий фрейм - ROWS BETWEEN 1 PRECEDING AND UNBOUNDED FOLLOWING 
SELECT
    part_key,
    value,
    order,
    groupArray(value) OVER (
        PARTITION BY part_key 
        ORDER BY order ASC
        ROWS BETWEEN 1 PRECEDING AND UNBOUNDED FOLLOWING
    ) AS frame_values
FROM wf_frame
ORDER BY
    part_key ASC,
    value ASC;

┌─part_key─┬─value─┬─order─┬─frame_values─┐
│        1 │     1 │     1 │ [1,2,3,4,5]  │
│        1 │     2 │     2 │ [1,2,3,4,5]  │
│        1 │     3 │     3 │ [2,3,4,5]    │
│        1 │     4 │     4 │ [3,4,5]      │
│        1 │     5 │     5 │ [4,5]        │
└──────────┴───────┴───────┴──────────────┘
-- row_number не учитывает фрейм, поэтому rn_1 = rn_2 = rn_3 != rn_4
SELECT
    part_key,
    value,
    order,
    groupArray(value) OVER w1 AS frame_values,
    row_number() OVER w1 AS rn_1,
    sum(1) OVER w1 AS rn_2,
    row_number() OVER w2 AS rn_3,
    sum(1) OVER w2 AS rn_4
FROM wf_frame
WINDOW
    w1 AS (PARTITION BY part_key ORDER BY order DESC),
    w2 AS (
        PARTITION BY part_key 
        ORDER BY order DESC 
        ROWS BETWEEN 1 PRECEDING AND CURRENT ROW
    )
ORDER BY
    part_key ASC,
    value ASC;

┌─part_key─┬─value─┬─order─┬─frame_values─┬─rn_1─┬─rn_2─┬─rn_3─┬─rn_4─┐
│        1 │     1 │     1 │ [5,4,3,2,1]  │    5 │    5 │    5 │    2 │
│        1 │     2 │     2 │ [5,4,3,2]    │    4 │    4 │    4 │    2 │
│        1 │     3 │     3 │ [5,4,3]      │    3 │    3 │    3 │    2 │
│        1 │     4 │     4 │ [5,4]        │    2 │    2 │    2 │    2 │
│        1 │     5 │     5 │ [5]          │    1 │    1 │    1 │    1 │
└──────────┴───────┴───────┴──────────────┴──────┴──────┴──────┴──────┘
-- first_value и last_value учитывают фрейм
SELECT
    groupArray(value) OVER w1 AS frame_values_1,
    first_value(value) OVER w1 AS first_value_1,
    last_value(value) OVER w1 AS last_value_1,
    groupArray(value) OVER w2 AS frame_values_2,
    first_value(value) OVER w2 AS first_value_2,
    last_value(value) OVER w2 AS last_value_2
FROM wf_frame
WINDOW
    w1 AS (PARTITION BY part_key ORDER BY order ASC),
    w2 AS (PARTITION BY part_key ORDER BY order ASC ROWS BETWEEN 1 PRECEDING AND CURRENT ROW)
ORDER BY
    part_key ASC,
    value ASC;

┌─frame_values_1─┬─first_value_1─┬─last_value_1─┬─frame_values_2─┬─first_value_2─┬─last_value_2─┐
│ [1]            │             1 │            1 │ [1]            │             1 │            1 │
│ [1,2]          │             1 │            2 │ [1,2]          │             1 │            2 │
│ [1,2,3]        │             1 │            3 │ [2,3]          │             2 │            3 │
│ [1,2,3,4]      │             1 │            4 │ [3,4]          │             3 │            4 │
│ [1,2,3,4,5]    │             1 │            5 │ [4,5]          │             4 │            5 │
└────────────────┴───────────────┴──────────────┴────────────────┴───────────────┴──────────────┘
-- второе значение в пределах фрейма
SELECT
    groupArray(value) OVER w1 AS frame_values_1,
    nth_value(value, 2) OVER w1 AS second_value
FROM wf_frame
WINDOW w1 AS (PARTITION BY part_key ORDER BY order ASC ROWS BETWEEN 3 PRECEDING AND CURRENT ROW)
ORDER BY
    part_key ASC,
    value ASC;

┌─frame_values_1─┬─second_value─┐
│ [1]            │            0 │
│ [1,2]          │            2 │
│ [1,2,3]        │            2 │
│ [1,2,3,4]      │            2 │
│ [2,3,4,5]      │            3 │
└────────────────┴──────────────┘
-- второе значение в пределах фрейма + Null для отсутствующих значений
SELECT
    groupArray(value) OVER w1 AS frame_values_1,
    nth_value(toNullable(value), 2) OVER w1 AS second_value
FROM wf_frame
WINDOW w1 AS (PARTITION BY part_key ORDER BY order ASC ROWS BETWEEN 3 PRECEDING AND CURRENT ROW)
ORDER BY
    part_key ASC,
    value ASC;

┌─frame_values_1─┬─second_value─┐
│ [1]            │         ᴺᵁᴸᴸ │
│ [1,2]          │            2 │
│ [1,2,3]        │            2 │
│ [1,2,3,4]      │            2 │
│ [2,3,4,5]      │            3 │
└────────────────┴──────────────┘

Примеры из реальной жизни

Следующие примеры решают общие проблемы из реальной жизни.

Максимальная/общая зарплата по департаментам

CREATE TABLE employees
(
    `department` String,
    `employee_name` String,
    `salary` Float
)
ENGINE = Memory;

INSERT INTO employees FORMAT Values
   ('Finance', 'Jonh', 200),
   ('Finance', 'Joan', 210),
   ('Finance', 'Jean', 505),
   ('IT', 'Tim', 200),
   ('IT', 'Anna', 300),
   ('IT', 'Elen', 500);
SELECT
    department,
    employee_name AS emp,
    salary,
    max_salary_per_dep,
    total_salary_per_dep,
    round((salary / total_salary_per_dep) * 100, 2) AS `share_per_dep(%)`
FROM
(
    SELECT
        department,
        employee_name,
        salary,
        max(salary) OVER wndw AS max_salary_per_dep,
        sum(salary) OVER wndw AS total_salary_per_dep
    FROM employees
    WINDOW wndw AS (
        PARTITION BY department
        rows BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING
    )
    ORDER BY
        department ASC,
        employee_name ASC
);

┌─department─┬─emp──┬─salary─┬─max_salary_per_dep─┬─total_salary_per_dep─┬─share_per_dep(%)─┐
│ Finance    │ Jean │    505 │                505 │                  915 │            55.19 │
│ Finance    │ Joan │    210 │                505 │                  915 │            22.95 │
│ Finance    │ Jonh │    200 │                505 │                  915 │            21.86 │
│ IT         │ Anna │    300 │                500 │                 1000 │               30 │
│ IT         │ Elen │    500 │                500 │                 1000 │               50 │
│ IT         │ Tim  │    200 │                500 │                 1000 │               20 │
└────────────┴──────┴────────┴────────────────────┴──────────────────────┴──────────────────┘

Кумулятивная сумма

CREATE TABLE warehouse
(
    `item` String,
    `ts` DateTime,
    `value` Float
)
ENGINE = Memory

INSERT INTO warehouse VALUES
    ('sku38', '2020-01-01', 9),
    ('sku38', '2020-02-01', 1),
    ('sku38', '2020-03-01', -4),
    ('sku1', '2020-01-01', 1),
    ('sku1', '2020-02-01', 1),
    ('sku1', '2020-03-01', 1);
SELECT
    item,
    ts,
    value,
    sum(value) OVER (PARTITION BY item ORDER BY ts ASC) AS stock_balance
FROM warehouse
ORDER BY
    item ASC,
    ts ASC;

┌─item──┬──────────────────ts─┬─value─┬─stock_balance─┐
│ sku1  │ 2020-01-01 00:00:00 │     1 │             1 │
│ sku1  │ 2020-02-01 00:00:00 │     1 │             2 │
│ sku1  │ 2020-03-01 00:00:00 │     1 │             3 │
│ sku38 │ 2020-01-01 00:00:00 │     9 │             9 │
│ sku38 │ 2020-02-01 00:00:00 │     1 │            10 │
│ sku38 │ 2020-03-01 00:00:00 │    -4 │             6 │
└───────┴─────────────────────┴───────┴───────────────┘

Скользящее / колеблющееся среднее (по 3 строкам)

CREATE TABLE sensors
(
    `metric` String,
    `ts` DateTime,
    `value` Float
)
ENGINE = Memory;

insert into sensors values('cpu_temp', '2020-01-01 00:00:00', 87),
                          ('cpu_temp', '2020-01-01 00:00:01', 77),
                          ('cpu_temp', '2020-01-01 00:00:02', 93),
                          ('cpu_temp', '2020-01-01 00:00:03', 87),
                          ('cpu_temp', '2020-01-01 00:00:04', 87),
                          ('cpu_temp', '2020-01-01 00:00:05', 87),
                          ('cpu_temp', '2020-01-01 00:00:06', 87),
                          ('cpu_temp', '2020-01-01 00:00:07', 87);
SELECT
    metric,
    ts,
    value,
    avg(value) OVER (
        PARTITION BY metric 
        ORDER BY ts ASC 
        ROWS BETWEEN 2 PRECEDING AND CURRENT ROW
    ) AS moving_avg_temp
FROM sensors
ORDER BY
    metric ASC,
    ts ASC;

┌─metric───┬──────────────────ts─┬─value─┬───moving_avg_temp─┐
│ cpu_temp │ 2020-01-01 00:00:00 │    87 │                87 │
│ cpu_temp │ 2020-01-01 00:00:01 │    77 │                82 │
│ cpu_temp │ 2020-01-01 00:00:02 │    93 │ 85.66666666666667 │
│ cpu_temp │ 2020-01-01 00:00:03 │    87 │ 85.66666666666667 │
│ cpu_temp │ 2020-01-01 00:00:04 │    87 │                89 │
│ cpu_temp │ 2020-01-01 00:00:05 │    87 │                87 │
│ cpu_temp │ 2020-01-01 00:00:06 │    87 │                87 │
│ cpu_temp │ 2020-01-01 00:00:07 │    87 │                87 │
└──────────┴─────────────────────┴───────┴───────────────────┘

Скользящее / колеблющееся среднее (по 10 секундам)

SELECT
    metric,
    ts,
    value,
    avg(value) OVER (PARTITION BY metric ORDER BY ts
      Range BETWEEN 10 PRECEDING AND CURRENT ROW) AS moving_avg_10_seconds_temp
FROM sensors
ORDER BY
    metric ASC,
    ts ASC;
    
┌─metric───┬──────────────────ts─┬─value─┬─moving_avg_10_seconds_temp─┐
│ cpu_temp │ 2020-01-01 00:00:00 │    87 │                         87 │
│ cpu_temp │ 2020-01-01 00:01:10 │    77 │                         77 │
│ cpu_temp │ 2020-01-01 00:02:20 │    93 │                         93 │
│ cpu_temp │ 2020-01-01 00:03:30 │    87 │                         87 │
│ cpu_temp │ 2020-01-01 00:04:40 │    87 │                         87 │
│ cpu_temp │ 2020-01-01 00:05:50 │    87 │                         87 │
│ cpu_temp │ 2020-01-01 00:06:00 │    87 │                         87 │
│ cpu_temp │ 2020-01-01 00:07:10 │    87 │                         87 │
└──────────┴─────────────────────┴───────┴────────────────────────────┘

Скользящее / колеблющееся среднее (по 10 дням)

Температура хранится с секундной точностью, но используя Range и ORDER BY toDate(ts), мы формируем фрейм размером 10 единиц, и из-за toDate(ts) единицей является день.

CREATE TABLE sensors
(
    `metric` String,
    `ts` DateTime,
    `value` Float
)
ENGINE = Memory;

insert into sensors values('ambient_temp', '2020-01-01 00:00:00', 16),
                          ('ambient_temp', '2020-01-01 12:00:00', 16),
                          ('ambient_temp', '2020-01-02 11:00:00', 9),
                          ('ambient_temp', '2020-01-02 12:00:00', 9),                          
                          ('ambient_temp', '2020-02-01 10:00:00', 10),
                          ('ambient_temp', '2020-02-01 12:00:00', 10),
                          ('ambient_temp', '2020-02-10 12:00:00', 12),                          
                          ('ambient_temp', '2020-02-10 13:00:00', 12),
                          ('ambient_temp', '2020-02-20 12:00:01', 16),
                          ('ambient_temp', '2020-03-01 12:00:00', 16),
                          ('ambient_temp', '2020-03-01 12:00:00', 16),
                          ('ambient_temp', '2020-03-01 12:00:00', 16);
SELECT
    metric,
    ts,
    value,
    round(avg(value) OVER (PARTITION BY metric ORDER BY toDate(ts) 
       Range BETWEEN 10 PRECEDING AND CURRENT ROW),2) AS moving_avg_10_days_temp
FROM sensors
ORDER BY
    metric ASC,
    ts ASC;

┌─metric───────┬──────────────────ts─┬─value─┬─moving_avg_10_days_temp─┐
│ ambient_temp │ 2020-01-01 00:00:00 │    16 │                      16 │
│ ambient_temp │ 2020-01-01 12:00:00 │    16 │                      16 │
│ ambient_temp │ 2020-01-02 11:00:00 │     9 │                    12.5 │
│ ambient_temp │ 2020-01-02 12:00:00 │     9 │                    12.5 │
│ ambient_temp │ 2020-02-01 10:00:00 │    10 │                      10 │
│ ambient_temp │ 2020-02-01 12:00:00 │    10 │                      10 │
│ ambient_temp │ 2020-02-10 12:00:00 │    12 │                      11 │
│ ambient_temp │ 2020-02-10 13:00:00 │    12 │                      11 │
│ ambient_temp │ 2020-02-20 12:00:01 │    16 │                   13.33 │
│ ambient_temp │ 2020-03-01 12:00:00 │    16 │                      16 │
│ ambient_temp │ 2020-03-01 12:00:00 │    16 │                      16 │
│ ambient_temp │ 2020-03-01 12:00:00 │    16 │                      16 │
└──────────────┴─────────────────────┴───────┴─────────────────────────┘

Ссылки

GitHub Issues

Дорожная карта для начальной поддержки оконных функций в этой задаче.

Все проблемы GitHub, связанные с оконными функциями, имеют тег comp-window-functions.

Тесты

Эти тесты содержат примеры текущего поддерживаемого синтаксиса:

https://github.com/ClickHouse/ClickHouse/blob/master/tests/performance/window_functions.xml

https://github.com/ClickHouse/ClickHouse/blob/master/tests/queries/0_stateless/01591_window_functions.sql

Документация Postgres

https://www.postgresql.org/docs/current/sql-select.html#SQL-WINDOW

https://www.postgresql.org/docs/devel/sql-expressions.html#SYNTAX-WINDOW-FUNCTIONS

https://www.postgresql.org/docs/devel/functions-window.html

https://www.postgresql.org/docs/devel/tutorial-window.html

Документация MySQL

https://dev.mysql.com/doc/refman/8.0/en/window-function-descriptions.html

https://dev.mysql.com/doc/refman/8.0/en/window-functions-usage.html

https://dev.mysql.com/doc/refman/8.0/en/window-functions-frames.html